

ACAM
COM Protocol

September 10 2021

Bruno Paillard

ACAM 1

1 INTRODUCTION ___ 2

2 COM ENUMERATION ___ 2

3 COM CONFIGURATION _______________________________________ 2

4 COMMUNICATION STRUCTURE ________________________________ 2

5 ENDIANNESS ___ 2

6 BASIC TYPES ___ 2

7 PACKET STRUCTURE __ 3

7.1 Command Packet ___ 3

7.2 Data Packet ___ 3

7.3 Acknowledge __ 3

7.4 Commands __ 3

8 ANNEX 1 – INTERPOLATION FILTER DESIGN _____________________ 9

8.1 Filter Parameters __ 10
8.1.1 Image Process Parameters __ 10
8.1.2 Filter Parameters ___ 10
8.1.3 Example __ 11

9 ANNEX 2 – PERSISTENCE TIME CONSTANT REPRESENTATION ____ 13

ACAM 2

1 Introduction

The ACAM series of instruments can use a virtual Com port for communications and management of the
instrument. The following document describes that Com protocol.

2 Com Enumeration

When the instrument is enumerated by the host PC, one of the interfaces that it presents is a virtual Com
port (a CDC-Class USB device). On Windows 8.1 and up the generic Windows Com port driver is
automatically instantiated and bound to that interface. On Windows 7, even though Microsoft provides a
generic driver, the user must manually load the driver when the device is connected to the PC for the first
time. After the driver is loaded, a new Com port is shown in the list of devices connected to the PC.

3 Com Configuration

The Com port can be configured (bit rate, number of stop bits… etc.), either using the controls in Windows
Device Manager, or in an application by using the appropriate API functions. However such settings have
no effect on the actual communication. They are only exposed for compatibility. At the hardware level
there is no physical serial line present, and the ultimate communication speed is only determined by the
throughput of the USB link. That throughput is typically a few Mb/s.

4 Communication Structure

Exchanges between the host PC and the instrument always follow a Master-Slave model. The host
initiates an exchange using a Command Packet. The host may also send data following that Command
Packet. The instrument responds either with the requested data, or with an Acknowledge if no data is to
be transmitted back to the host.

In all cases after sending a command, the host PC must not send another command before the
instrument sends a response back. That response may be data or may be an Ack if no data is requested
by the command.

5 Endianness

Unless otherwise noted, the endianness is Big-Endian (MSB first).

6 Basic Types

The following basic types may be used in this protocol:

Type
Name

Description Endianness

U8 Single byte unsigned N/A

U16 16-bit word unsigned Big-Endian

U32 32-bit word unsigned Big-Endian

U64 64-bit word unsigned Big-Endian

I8 Single byte signed N/A

ACAM 3

I16 16-bit word signed Big-Endian

I32 32-bit word signed Big-Endian

I64 64-bit word signed Big-Endian

Sgl 32-bit word in IEEE 754 floating point format Big-Endian

Dbl 64-bit word in IEEE 754 floating point format Big-Endian

String Strings are concatenations of 8-bit ASCII characters, terminated by an
end-of-text (0x00) byte.

N/A

Table 1

7 Packet Structure

7.1 Command Packet

The Command Packet is structured as follows:

Field Size
(bytes)

Function

Command 4 The command indicates the data transmitted or operation performed.

Bit 31 of the command word indicates the direction of transfer:

• 0: OUT (Host to Device)

• 1: IN (Device to Host)

Address 4 The function of the address field varies with the command

Count 4 This field indicates the number of bytes to be transferred in the following data
packet (either IN or OUT). How the bytes are interpreted is defined by the
command.

This number does not include the command packet.

Table 2

7.2 Data Packet
Data Packets are simply a concatenation of bytes. The way the bytes are interpreted is a function of the
command that precedes the Data packet.

7.3 Acknowledge
The Ack is a single byte with value 0x06. The Ack byte is only sent back to the host if the command is a
Write, and therefore does not require a data response from the device.

7.4 Commands

ACAM 4

Command Description Address Data/Ack

0x80000031 Read_Model

The address field is not relevant for
this command

Data:

ASCII string
representing
the Model.

Size: Up to 32
bytes,
including the
termination
byte

Ack: No

0x80000032 Read_SN

The address field is not relevant for
this command

Data:

ASCII string
representing
the serial
number of the
instrument.

Size: Up to 32
bytes,
including the
termination
byte

Ack: No

0x80000033 Read_FW_Rev

The address field is not relevant for
this command

Data:

ASCII string
representing
the Firmware
revision.

Size: Up to 32
bytes,
including the
termination
byte

Ack: No

0x80000034 Read_FPGA_Rev

The address field is not relevant for
this command

Data:

ASCII string
representing
the FPGA
Logic’s
revision.

ACAM 5

Size: Up to 32
bytes,
including the
termination
byte

Ack: No

0x80000035 Read_DOB

The address field is not relevant for
this command

Data:

U64 number
representing
the UTC
(Universal
Time Code) of
the date/time
of birth. The
UTC
represents the
number of
seconds
elapsed since
Jan 1 1904.

Ack: No

0x80000036 Read_User_ID

The address field is not relevant for
this command

Data:

ASCII string
representing
the User-ID,
as defined by
the user.

Size: Up to 32
bytes,
including the
termination
byte

Ack: No

0x00000036 Write_User_ID

The address field is not relevant for
this command

Data:

ASCII string
representing
the user-ID, as
defined by the
user.

Size: Up to 32
bytes,
including the
termination
byte

ACAM 6

Ack: Yes

0x800000A1 Read_Image

This command retrieves all
the pixels of the image

The address field is not relevant for
this command

Data:

N successive
pixels.

Each pixel is
represented
as 4-byte
IEEE 754 float
values. The
MSB is sent
first.

The pixels are
numbered
from left to
right and
bottom to top.
Pixel No 0 is at
the bottom-left
of the image.

Ack: No

0x000000B1 Write_Stream_Index

This command adjusts the
beamformer’s boresight to a
pixel index. Effectively the
signal that is streamed
through the USB audio
interface is the signal
captured at the azimuth and
elevation corresponding to
the pixel index indicated.

The address field represents the pixel
number corresponding to the
beamformer’s boresight for the audio
signal that is streamed out to the host
PC.

Pixels are numbered from 0 to
(NPixel_rows x NPixel_Cols) -1 from left to
right and bottom to top. Pixel No 0 is
at the bottom left of the image. Pixel 1
is just to the right of pixel 0 on the
bottom row. The pixel just above pixel
0 in the image is numbered NPixel_rows.

Data: No

Ack: Yes

0x000000B2

Write_Stream_Index_Dbg
(Debug Mode)

This command puts the
instrument in debug mode,
where the direct stream
from a microphone is output
on the I2S out channel. The
address indicates the
microphone number (from 0
to N_Channels-1)

The address field represents the
microphone number for the audio
signal that is streamed out to the host
PC.

Microphones are numbered from 0 to
(NSensor_rows x NSensor_Cols) -1 from left to
right and bottom to top. Microphone
No 0 is at the bottom left of the array,
when viewing the array from behind.
Microphone 1 is just to the right of
microphone 0 on the bottom row. The
microphone just above microphone 0
in the image is numbered NSensor_rows.

Data: No

Ack: Yes

ACAM 7

0x000000C2 Write_Interpolation_Filter The address field represents the
number of coefficients transferred
N_Coefs. This is typically 980 for an
interpolation by 20 with 49 coefficients
per interpolation filter.

Data:

N*3
successive
bytes. Each
set of 3 bytes
represents an
18-bit
coefficient.
Each
coefficient is
sent MSB first.
The
coefficients
must be right-
aligned. The
contents of bit
positions 18 to
23 (the first
byte sent of
each
coefficient)
does not
matter.

Ack: Yes

0x000000C3 Write_Persistence_Kt The address field is not relevant for
this command.

Data:

I32 (4 bytes).
This number
represents an
18-bit value.
That value is
the time
constant Kt of
the lowpass
image-
persistence
filter. The
value is sent
MSB first. The
value must be
right-aligned.
The contents
of bit positions
18 to 31 must
be zero.

Ack: Yes

0x800000D1 Read_Image_Parameters

The address field represents the type
of parameter:

0: N_Array

Data:

4 bytes
representing

ACAM 8

The number of rows and columns of
microphones in the antenna array
The upper word represents the
number of rows. The lower word
represents the number of columns

1: N_Pixels
The number of rows and columns of
pixels in the image
The upper word represents the
number of rows. The lower word
represents the number of columns

2: I_Params:
- N_Bits_per_Coef

The First byte represents the number
of bits per coefficients (typically 18 for
the latest implementation)

- N_Coefs_per_Interpolation

The next byte represents the number
of coefficients per interpolation
(typically 49 for the latest
implementation)

- N_Bytes_per_Coef

The next byte represents the number
of bytes per coefficient. This is
typically 3 for 18-bit coefficients

- I_Factor

The last byte represents the
interpolation factor (typically 20 for
FOV 90 deg, or 32 for FOV 60 deg)

3: Fs:
- Returns 4 bytes that
represent the sampling frequency in
U32 format.

the requested
data.

Ack: No

Table 3

ACAM 9

8 Annex 1 – Interpolation Filter Design

The interpolation filter’s frequency response can be adjusted to limit the sensitivity of the camera to certain
frequency bands.

Figure 1, Figure 2 and Figure 3 shows the default frequency and impulse responses of the filter for the
90 deg field of view. Figure 1 shows full frequency response of the filter. Figure 2 shows a zoom on the
effective bandwidth of the camera. Figure 3 shows the impulse response of the filter. The filter is designed
for a sampling frequency of 320 kHz. It has a 0 dB gain on most of the instrument’s bandwidth, except
near the Nyquist frequency, where it must decrease sharply.

The filter is an FIR filter that is typically linear phase (symmetrical). It must be designed with a
predetermined number of coefficients, and for a predetermined interpolation factor. The default filter has
980 coefficients.

A new filter is written to the DSP engine of the camera by sending the successive samples of a new
impulse response with the Write_Interpolation_Filter command. The filter new response is not persistent.
It will revert back to the default filter response whenever the instrument is disconnected, or if the field of
view is changed.

Figure 1

Figure 2

ACAM 10

Figure 3

8.1 Filter Parameters
8.1.1 Image Process Parameters
In order to synthesize an appropriate filter, the first step is to find the process parameters that are in effect
in the DSP engine of the camera. Different parameters can be in effect at any given time. For instance,
changing the field of view of the camera, or firmware upgrade can affect these parameters. So, it is
important to find those parameters before designing and writing a new filter response:

Image process parameters can be read using the Read_Image_Parameters command with the
I_Params and Fs selectors.

The I_Params selector returns:

• I_Factor: The interpolation factor

• N_Bytes_per_Coef: The number of bytes per coefficient

• N_Bits_per_Coef: The number of bits per coefficient

• N_Coefs_per_Factor: The number of coefficients per interpolation factor.

The Fs selector returns:

• Fs: The base sampling frequency.

8.1.2 Filter Parameters
With that information, the filter can be designed with the following parameters:

• N_Coefs: The total number of coefficients of the filter must be equal to:
𝑁𝑁_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐼𝐼_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹 ∗ 𝑁𝑁_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑝𝑝𝐶𝐶𝐹𝐹_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹

• F_Filter: The sampling frequency for which the filter is designed is calculated
as: 𝐹𝐹_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹 = 𝐼𝐼_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹 ∗ 𝐹𝐹𝐶𝐶

• Fmax: The effective bandwidth of the filter must be: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐶𝐶/2.
All the spectral shaping of the interpolation filter must occur between 0 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹. Above 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
(between 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and 𝐹𝐹_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹/2), the frequency response of the filter must be as low as possible
to avoid any aliasing and insure a good camera performance without phantom images.

ACAM 11

• Dyn_Range: The dynamic range of the coefficients is – 1 to +1. The representation
is defined by the number of bits per coefficient. The coefficients are represented in fractional
representation, with the binary point to the right of the MSB. This way coefficients between -1
and (almost) +1 can be represented. This representation is called QN_Bits_per_Coef-1. In the current
implementation, with N_Bits_per_Coef = 18, the representation is Q17. In practice however, the
definition of dynamic range is not essential. Let’s assume that the filter that one wants to
implement has coefficients between -4 and +4. One only must map that dynamic range to a Q17
representation. The amplitude of the image, and the audio signal streamed by the instrument,
will be scaled accordingly.

8.1.3 Example
Let’s say we want to modify the response of the camera, to be sensitive to components between 3.5 kHz
and 7kHz.

We find the process parameters that are currently in effect in the camera. Let’s assume we find the
following:

• I_Factor: 20

• N_Bytes_per_Coef: 3

• N_Bits_per_Coef: 18

• N_Coefs_per_Factor: 49

• Fs: 16 kHz

From these values, we find the parameters of the filter:

• N_Coefs: 49x20 = 980

• F_Filter: 20x16000 = 320 kHz

• Fmax: Fs/2 = 8 kHz

• Dyn_Range: +- 1

The linear-phase filter is then synthesized using any appropriate filter synthesis tool, using these
parameters. As well as the required bandwidth (3.5 kHz to 7 kHz).

Let’s assume the filter synthesis tool produces the filter described in Figure 4 to Figure 6.

We then map the 980 filter coefficients to the Q17 representation. With that mapping, the largest coefficient
has a binary value of 45141 (0x0B055).

We then use the N_Bytes_per_Coef = 3 value to segment each 18-bit coefficient in groups of 3 bytes
(MSB first). With that segmentation the largest coefficient is represented as the three successive bytes
0x00, 0xB0, 0x 55.

We then use the Write_Interpolation_Filter command to send those 2940 bytes to the camera.

ACAM 12

Figure 4

Figure 5

Figure 6

ACAM 13

9 Annex 2 – Persistence Time Constant Representation

The persistence time constant Kt is represented as a positive fractional binary number on 18 bits (UQ18).
With that representation, the dynamic range of the Kt value is 0 to 1. Kt is sent to the camera as a 4-byte
positive integer. Bits 18 to 31 of the value sent to the camera must be zero.

The relationship between the 𝑘𝑘𝑡𝑡 value and the time constant of persistence 𝜏𝜏 (in seconds) is:

𝑘𝑘𝑡𝑡 = 1 − 𝐶𝐶�
−1
𝐹𝐹𝑠𝑠∗𝜏𝜏

�

So the longer the time constant 𝜏𝜏, the smaller the kt value.

The relationship between 𝑘𝑘𝑡𝑡 and the binary value Kt is:

𝐾𝐾𝑡𝑡 = 𝑘𝑘𝑡𝑡 ∗ 218

So for instance, if FS = 16 kHz, and we want to have a time constant of 0.5s, the binary value that must
be transmitted would be Kt = 33 (0x00000021).

The following bytes must be sent using the Write_Persistence_Kt command:

0x00, 0x00, 0x00, 0x21

	ACAM
	COM Protocol

	1 Introduction
	2 Com Enumeration
	3 Com Configuration
	4 Communication Structure
	5 Endianness
	6 Basic Types
	7 Packet Structure
	7.1 Command Packet
	7.2 Data Packet
	7.3 Acknowledge
	7.4 Commands

	8 Annex 1 – Interpolation Filter Design
	8.1 Filter Parameters
	8.1.1 Image Process Parameters
	8.1.2 Filter Parameters
	8.1.3 Example

	9 Annex 2 – Persistence Time Constant Representation

